Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Matthew D. Zimmerman, Maksymilian Chruszcz, Marcin Cymborowski, Heping Zheng and Wladek Minor*

University of Virginia, Department of Molecular Physiology and Biological Physics, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA

Correspondence e-mail:
wladek@iwonka.med.virginia.edu

Key indicators

Single-crystal X-ray study
$T=103 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.048$
$w R$ factor $=0.146$
Data-to-parameter ratio $=46.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Disodium 4-nitrophenylphosphate hexahydrate

Two formula units of disodium 4-nitrophenylphosphate hexahydrate, $2 \mathrm{Na}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{6} \mathrm{P}^{2-} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, are present in the asymmetric unit. The 4-nitrophenyl groups of the two dianions are essentially identical in structure, while the phosphate groups differ in conformation.

Comment

4-Nitrophenylphosphate has been used for decades as a marker of phosphatase activity. The anion is colorless, but the 4-nitrophenyl product liberated after cleavage of the phosphate is yellow, and thus progress of the reaction may be monitored by measuring absorption at 410 nm . It was originally employed clinically in the detection of alkaline phosphatase activity in blood serum (Bessey et al., 1946) and is used today as a general indicator of phosphohydrolase activity. The anion is a component of a set of general enzymatic screens against libraries of proteins of unknown function (Kuznetsova et al., 2005).

The anion is commercially available in the dianion form as a hexahydrate disodium salt. Jones et al. (1984b) reported the structure using bis(cyclohexylammonium) as the countercation, but were unable to crystallize the disodium salt satisfactorily. We report the structure of the disodium 4-nitrophenylphosphate hexahydrate salt, (I), solved at 103 K (Fig. 1). There are two 4-nitrophenylphosphate dianions in the asymmetric unit of (I). While the 4-nitrophenyl groups of both anions are nearly identical in structure, the phosphate groups differ in conformation, in both the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 3-\mathrm{P} 1$ torsion angle [anion $A: 137.96(9)^{\circ}$; anion $B: 158.52(9)^{\circ}$] and the $\mathrm{C} 1-$ $\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$ torsion angle [for $A-49.26(10)^{\circ}$; for B $\left.-43.42(10)^{\circ}\right]$.

In the crystal structure of (I), alternatingnon-polar and hydrophilic layers are observed (Fig. 2). The non-polar regions consist of tightly packed nitrophenyl groups, while the hydrophilic layers contain the phosphate ions, sodium ions and their bound water molecules. The crystal packing for (I) differs from that of the bis(cyclohexylammonium) salt (Jones et al., 1984b). In the latter, the cyclohexylammonium cations interdigitate between the nitrophenyl groups, while in the former the aromatic rings stack directly.

Received 2 March 2006
Accepted 13 March 2006

The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Na…O contacts are shown by dashed lines.

Jones et al. (1984b) report that the length of the CO-P bond in their structure of the 4-nitrophenylphosphate dianion is significantly longer [1.664 (5) \AA] than those of other dianion alkylphosphates, with a mean of 1.614 (4) \AA (Jones et al., 1984a). The measured CO-P distances in (I) [P1 $A-\mathrm{O} 3 A=$ 1.6461 (8) \AA and $\mathrm{P} 1 B-\mathrm{O} 3 B=1.6519$ (8) \AA] are not significantly different from that found in the bis(cyclohexylammonium) salt. Our measure of the mean $\mathrm{CO}-\mathrm{P}-\mathrm{O}^{-}$angle of 105.2° in (I) is significantly smaller than both the mean of 114.0° for the bis(cyclohexylammonium) salt and the reported mean of 112.8° for dianion alkylphosphates (Jones et al., 1984b). Finally, the bis(cyclohexylammonium) salt shows significantly shorter lengths for the remaining three $\mathrm{P}-\mathrm{O}$ bonds compared with the means $(1.514,1.519$ and $1.510 \AA$) for 22 other dianion alkylphosphates (Jones et al., 1984a). In contrast, our values for these bonds in (I) do not differ significantly from the reported mean values. While (I) follows the trend for $\mathrm{CO}-\mathrm{P}$ bond lengths as a function of $R-\mathrm{OH}$ $\mathrm{p} K_{a}$, as explored by Jones and co-workers, we find that the $\mathrm{p} K_{a}$ of the 4-nitrophenyl group alone is not sufficient to explain the differences in $\mathrm{P}-\mathrm{O}^{-}$bond length or $\mathrm{CO}-\mathrm{P}-\mathrm{O}^{-}$bond angles. Neighboring cations and water molecules also influence the geometry of the phosphate group.

Experimental

Disodium 4-nitrophenylphosphate hexahydrate was purchased from Sigma and crystallized by slow evaporation of a solution in 70% aqueous ethanol. The crystal was grown in the dark at room temperature.

Crystal data

$$
\begin{aligned}
& 2 \mathrm{Na}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{6} \mathrm{P}^{2-} \cdot 6 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=742.30 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=19.007(1) \AA \\
& b=11.982(1) \AA \\
& c=13.492(1) \AA \\
& \beta=103.708(1)^{\circ} \\
& V=2985.2(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

Figure 2
Crystal packing of (I) projected along the b axis. Na $\cdots \mathrm{O}$ contacts are shown by dashed lines. H atoms have been omitted for clarity.

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans with χ offset
Absorption correction: multi-scan (Otwinowski et al., 2003)
$T_{\text {min }}=0.941, T_{\text {max }}=0.946$
130337 measured reflections

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048
$$

$$
w R\left(F^{2}\right)=0.146
$$

$$
S=1.10
$$

18300 reflections
397 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} A \cdots \mathrm{O} 4 B^{\mathrm{i}}$	0.87	1.93	2.7985 (13)	172
$\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} A \cdots \mathrm{O} 2 A^{\text {ii }}$	0.87	2.12	2.9725 (15)	166
$\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} B \cdots \mathrm{O} B$	0.85	2.49	2.9903 (12)	119
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} B \cdots \mathrm{O} 4 B^{\mathrm{i}}$	0.85	2.23	2.7396 (12)	119
$\mathrm{O} 3-\mathrm{H} 1 \mathrm{OC} \cdots \mathrm{O}_{2} B^{\text {iii }}$	0.85	2.33	3.0285 (14)	139
$\mathrm{O} 3-\mathrm{H} 2 \mathrm{OC} \cdots \mathrm{O} 4 A$	0.85	2.06	2.7653 (12)	140
$\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} D \cdots \mathrm{O} 6 \mathrm{~B}$	0.85	1.96	2.7941 (12)	164
$\mathrm{O} 4-\mathrm{H} 2 \mathrm{O} D \cdots \mathrm{O} 4 A$	0.85	2.09	2.9204 (14)	163
$\mathrm{O} 5-\mathrm{H} 1 \mathrm{O} E \cdots \mathrm{O} A^{\text {iv }}$	0.85	2.37	3.1163 (14)	147
O5-H1OE \cdots O6 $A^{\text {iv }}$	0.85	2.63	3.1780 (14)	123
O5-H2OE \cdots O6B	0.85	2.23	2.8902 (12)	135
$\mathrm{O} 6-\mathrm{H} 2 \mathrm{O} F \cdots \mathrm{O} 6 A$	0.85	2.04	2.8153 (12)	150
O7-H1OG \cdots O5 $A^{\text {iv }}$	0.85	2.21	2.7170 (13)	118
$\mathrm{O} 7-\mathrm{H} 2 \mathrm{OG} \cdots \mathrm{O}^{\mathrm{v}}$	0.85	2.54	3.1354 (13)	127
$\mathrm{O} 8-\mathrm{H} 1 \mathrm{OH} \cdots \mathrm{O}^{\text {V }}$	0.85	2.28	2.7582 (12)	116
$\mathrm{O} 8-\mathrm{H} 2 \mathrm{OH} \cdots \mathrm{O} 6 A$	0.85	2.10	2.8631 (12)	149
O9-H1OI \cdots O6B	0.85	2.04	2.7693 (12)	144
O9-H2OI \cdots O6	0.85	1.92	2.7689 (14)	170
$\mathrm{O} 10-\mathrm{H} 1 \mathrm{O} J \cdots \mathrm{O} 6 A^{\text {vi }}$	0.85	2.52	2.9701 (13)	114
$\mathrm{O} 10-\mathrm{H} 2 \mathrm{O} J \cdots \mathrm{O} 4 A^{\text {iv }}$	0.85	2.04	2.7252 (12)	136
O11-H1OK \cdots O $4 B$	0.85	2.01	2.7878 (13)	151
$\mathrm{O} 11-\mathrm{H} 2 \mathrm{O} K \cdots \mathrm{O} 1 A^{\text {vii }}$	0.85	2.17	2.9369 (15)	150
$\mathrm{O} 12-\mathrm{H} 2 \mathrm{O} L \cdots \mathrm{O} 1 B^{\text {viii }}$	0.85	2.15	2.9633 (16)	160

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (iv)
$-x+1, y+\frac{1}{2},-z+\frac{1}{2} ; \quad$ (v) $\quad-x+1, y-\frac{1}{2},-z+\frac{1}{2} ; \quad$ (vi) $\quad-x+1,-y+1,-z ; \quad$ (vii)
$-x,-y+1,-z ;$ (viii) $-x,-y+1,-z+1$.

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0727 P)^{2}\right. \\
\quad+0.9368 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.97 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.88 \mathrm{e}^{-3}
\end{aligned}
$$

18300 independent reflections
12628 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=40.3^{\circ}$
$h=-34 \rightarrow 33$
$k=0 \rightarrow 21$
$l=0 \rightarrow 24$

metal-organic papers

All H atoms were positioned geometrically. The aromatic $\mathrm{C}-\mathrm{H}$ atoms were allowed to ride on their parent C atoms, with the $\mathrm{C}-\mathrm{H}$ bond distance fixed at $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The water molecule H -atom positions were calculated using CALCOH (Nardelli, 1999) and they were also treated as riding, with $U_{\text {iso }}(\mathrm{H})=$ $0.03 \AA^{2}$.

Data collection: HKL-2000 (Otwinowski \& Minor, 1997); cell refinement: HKL-2000; data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) and HKL2000; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and HKL-2000; molecular graphics: HKL-2000, ORTEPIII (Burnett \& Johnson, 1996) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: HKL2000.

This work was supported by contract GI11496 from HKL Research, Inc. The authors thank Rigaku/MSC for the loan of the R-AXIS RAPID diffractometer.

References

Bessey, O. A., Lowry, O. H. \& Brock, M. J. (1946). J. Biol. Chem. 164, 321-329. Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jones, P. G., Sheldrick, G. M., Kirby, A. J. \& Abell, K. W. Y. (1984a). Acta Cryst. C40, 547-549.
Jones, P. G., Sheldrick, G. M., Kirby, A. J. \& Abell, K. W. Y. (1984b). Acta Cryst. C40, 550-552.
Kuznetsova, E., Proudfoot, M., Sanders, S. A., Reinking, J., Savchenko, A., Arrowsmith, C. H., Edwards, A. E. \& Yakunin, A. F. (2005). FEMS Microbiol. Rev. 29, 263-279.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Otwinowski, Z., Borek, D., Majewski, W. \& Minor, W. (2003). Acta Cryst. A59, 228-234.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

